MEMORANDUM

To: Mike Berthelson, AVP FM
 Mike Perkins, AVP CPPM
 Craig Moody, Director, UHS

Cc: Kathleen O’Brien
 Cary Jones
 Ron Holden
 Larry Thompson
 Water Event Task Force

From: Neil Carlson, Chair, Water Event Task Force

RE: Water Event Task Force Recommendations

SUMMARY

The attached recommendations represent best practice gleaned from the participants on the Water Event Task Force. Even if fully implemented, they cannot prevent all water event losses. However, we hope that the lessons of past events can be used to reduce the frequency and severity of future water event losses. We propose an integrated approach to reduce University property damage and work disruption through appropriate maintenance, rapid flood response, and improved construction practices.

The recommendations are based on an analysis of past flood event and responses. These recommendations are intended to be cost effective. Some recommendations are preventative while others are intended to mitigate loss.

Water Event Task force members who were chartered last year includes the following individuals. Sophia Anema, Institutional Compliance; Michael Buck, Neil Carlson, and James Lauer, DEHS; Ginger DeRosier, Real Estate; Katherine Lamkin, Paul Drews, Ruthann Manlet, Dana Staehnke FM; Harvey Turner, CPPM; Becky Hintz, University Services; Dale Dorschner, Kathy Norlien, Dan Tranter – Minnesota Department of Health; Tim Froehlig, Institute for Environmental Assessment.
The Task Force recommends that CPPM, FM, Risk Management and DEHS conduct an annual assessment of flood events in order to review existing instructions and procedures. This assessment will allow us to continuously reduce the loss exposure of the University.

CHARGE OF TASK FORCE:

The Water Event Task Force was established to review and update recommendations intended to reduce loss due to water events. The Associate Vice President for Facilities Management and the Director of University Health and Safety have charged the work team with the following tasks:

1. Identify areas, materials and activities susceptible to water intrusion events.
2. Discuss past flooding events identifying causes, actions taken and ways of improving response and reducing future losses.
3. Review existing internal and external guidelines and policies for water remediation and flood prevention.
4. Assess the effectiveness of these guidelines and policies by comparing them to past water events.
5. Suggest revisions to the guidelines and policies intended to further prevent or reduce losses caused by water events. This may include changing standard operating procedures, construction practices, and training.
6. Develop measurements to evaluate the effectiveness of the revisions to flood response.
7. Identify areas of highest risk for flood events and cost effective options to reduce the risk. The options may include mitigation, redesign, or changes in SOPs and maintenance procedures.

OBSERVATION ABOUT INCOMPLETE LOSS DATA:

The task force discovered that the University does not have a unified method for collecting or recording flood loss data. We estimated the impact of some losses because direct costs are dispersed between the budgets of Risk Management, Facilities Management and the operating department where the loss occurred, and some losses are just overlooked. In addition, there is no method to determine the indirect costs associated with lost employee productivity or the time used by FM, DEHS and operating department staff to respond to the event. The task force relied on Facilities Management COMPASS data, insurance claim data and collective memory to reconstruct incident costs. Most losses are probably higher than what is recorded. Because the accounting issue is outside of the charge of the task force and the expertise of its staff, the AVP for Facilities Management may wish to assign someone who has experience with accounting systems to look at this issue. If cost data associated with water event losses were standardized, then the impact of losses and effectiveness of adopted changes could be tracked over time.